High Performance Thrusters for Advanced Green Monopropellants, Phase I

Completed Technology Project (2014 - 2014)

Project Introduction

The development of an advanced green monopropellant propulsion system could have significant benefits to a wide range of NASA space missions, from deep space satellites to manned space vehicles. However, the state-of-the-art thruster materials, refractory metals, cannot withstand AF-M315E combustion environment at temperatures of >2000°C without loosing their mechanical integrity. Sienna Technologies, Inc, in collaboration with Moog-ISP, proposes to develop a revolutionary refractory metal-ceramic FGM material and an AF-M315E advanced green monopropellant thruster. In Phase I we will demonstrate a refractory metal-ceramic FGM through materials design and microstructural control that meets the requirements for thrust chamber for AF-M315E monopropellant. In Phase II we will fine-tune the FGM material properties to maximize the mechanical strength and thermochemical stability; and design, fabricate, and test a working FGM thruster in collaboration with Moog-ISP.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
Sienna Technologies,	Lead	Industry	Woodinville,
Inc.	Organization		Washington
Jet Propulsion Laboratory(JPL)	Supporting	NASA	Pasadena,
	Organization	Center	California

High Performance Thrusters for Advanced Green Monopropellants, Phase I

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	
Images	2
Organizational Responsibility	2
Project Management	
Technology Maturity (TRL)	2
Technology Areas	
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

High Performance Thrusters for Advanced Green Monopropellants, Phase I

Completed Technology Project (2014 - 2014)

Primary U.S. Work Locations		
California	Washington	

Project Transitions

June 2014: Project Start

December 2014: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/137476)

Images

Briefing Chart

High Performance Thrusters for Advanced Green Monopropellants, Phase I (https://techport.nasa.gov/imag e/133727)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Sienna Technologies, Inc.

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Ender Savrun

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

High Performance Thrusters for Advanced Green Monopropellants, Phase I

Completed Technology Project (2014 - 2014)

Technology Areas

Primary:

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

